THOMSON REUTERS
[FRTSSDS- June 2018]
ISSN 2348-8034
DOI: 10.5281/zenodo. 1293839
Impact Factor- 5.070

Global Journal of Engineering Science and Researches COMPATIBLE MAPPING AND COMMON FIXED POINT FOR FIVE MAPPINGS

O. P. Gupta

Shri Yogindra Sagar Institute of Technology \& Science, Ratlam

Abstract

In this paper, it is proved that the existence of unique common fixed point theorem involving for five mappings with semi-compatibility, weak compatibility and commutativity on Metric space. This result improves and generalizes some known result of Imdad and Khan [7] by using functional expressions.

Subject Classification. Primary 54H25, Secondary 47H10
Keywords- Fixed point, Complete metric space, semi-compatibility and weak compatibility mappings.

I. INTRODUCTION

The study of common fixed point of mapping satisfying different contraction condition has been a very active field of research activity and may be extended to the abstract spaces. Fisher[4,5] generalizes affixed point theorem of Jungck[6]. Hicks and Kubicek [1] proved the Mann iteration process in Hilbert space. Pandhare and Waghmode [9] proved a common fixed point theorem in Hilbert space. Srinivas .V [11] proved a common fixed point theorem on compatible mappings of type (p) . Shrivastava [12] a proved compatible mapping and common fixed point theorem. Gupta [13] Common fixed point theorem for compatible mappings of type ($\mathrm{A}-1$) in complete fuzzy metric space. Sessa [10] introduced the notion of weak commutativity which asserts that a pair of self mapping (A,B) on a metric space (X, d) is said to be weakly commuting if $d(A B x, B A x) \leq d(B x, A x)$ for all x in X. Motivated by Sessa [10], The notion of compatible mapping was introduced by Jungck [7] , which asserts that a pair self mapping (A, B) of a metric space (X, d) is said to be compatible if $\lim _{n \rightarrow \infty}\left(\mathrm{ABx}_{\mathrm{n}}, \mathrm{BAx}_{\mathrm{n}}\right)=0$ whenver $\lim _{n \rightarrow \infty} \mathrm{Ax}_{\mathrm{n}}=\lim _{n \rightarrow \infty} \mathrm{Bx}_{\mathrm{n}}=\mathrm{t} \square \square \mathrm{X}$. A weakly commuting pair is compatible, but not conversely as demonstrated in Jungck [7]. Lohani and Badshah [8] proved some common fixed point theorem for four compatible mappings on Metric space ,Imdad [2] proved a unique common fixed point theorem on five mappings.

Definition 1. Let S and T be mappings from a metric space (X, d) into itself. Then mappings S and T are said to be compatible if $\lim _{n \rightarrow \infty} d\left(S T x_{n}, T S x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$ for some $t \in X$.

Definition 2. Let S and T be mappings from a metric space (X, d) into itself. Then mappings S and T are said to be weakly compatible if they commute at their coincidence point that is $S T x=T S x$ whenever $S x=T x, x \in X$.

Definition 3. Let S and T be mappings from a metric space (X, d) into itself. Then mappings S and T are said to be semi-compatible if $\lim _{n \rightarrow \infty} d\left(S T x_{n}, T x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} S x_{n}=\lim _{n \rightarrow \infty} T x_{n}=t$ for some $t \in X$.
Note that compatible mappings are weakly compatible but weakly compatible mappings are not necessarily compatible and clearly the pair (S,T) is semi-compatible then they are weakly compatible.

In this paper we prove a common fixed point theorem involving five mappings which generalizes earlier result due to Imdad and Khan [3] by improving contraction condition besides optimally chosen suitable semi compatible, weak compatible and commuting condition on Complete Metric space by using a rational inequality.

THOMSON REUTERS
[FRTSSDS- June 2018]
ISSN 2348-8034
DOI: 10.5281/zenodo. 1293839
Impact Factor- 5.070
Theorem 1. Let A, B, S, T and P be self mappings of complete metric space (X, d) satisfying the $A B(X) \subset P(X)$, $S T(X) \subset P(X)$ and $A B(X) \cap S T(X) \subset P(X)$ and

$$
\begin{align*}
& d(A B x, S T y) \leq \alpha_{1}\left[\frac{d(A B x, P x)\{1+d(S T y, P y)\}}{\{1+d(P x, P y)\}}\right] \tag{1}\\
& \quad+\alpha_{2}[d(A B x, P y)+d(S T y, P x)]+\alpha_{3} d(P x, P y)
\end{align*}
$$

for each $x, y \in X$ and $\alpha_{1}, \alpha_{2}, \alpha_{3} \geq 0, \alpha_{1}+2 \alpha_{2}+\alpha_{3}<1$ either if,
(a) $\{\mathrm{AB}, \mathrm{P}\}$ are semi-compatible, P or AB is continuous and (ST, P$)$ are weakly compatible or
(b) $\{\mathrm{ST}, \mathrm{P}\}$ are semi-compatible P or ST is continuous and $(\mathrm{AB}, \mathrm{P})$ are weakly compatible. Then AB, ST and P have a unique common fixed point. Furthermore if the pairs (A,B),(A,P),(B,P),(S,T),(S,P)and (T,P) are commuting mapping then A, B, S, T and P have a unique common fixed point.

Proof. Let x_{0} be an arbitrary point in X , since $\mathrm{AB}(\mathrm{X}) \subset \mathrm{P}(\mathrm{X})$ we can find a point x_{1} in X such that $\mathrm{AB} x_{0}=\mathrm{P} x_{1}$. Also since $\mathrm{ST}(\mathrm{X}) \subset \mathrm{P}(\mathrm{X})$ we can choose a point x_{2} with $\mathrm{ST} x_{1}=\mathrm{I} x_{2}$, using this argument repeatedly one can construct a sequence $\left\{z_{n}\right\}$ such that
$\mathrm{z}_{2 \mathrm{n}}=\mathrm{AB} x_{2 n}=\mathrm{P} x_{2 n+1}, \mathrm{z}_{2 \mathrm{n}+1}=\mathrm{ST} x_{2 n+1}=\mathrm{P} x_{2 n+2}$ for $\mathrm{n}=0,1,2, \ldots$.
$\mathrm{d}\left(z_{2 n+2}, z_{2 n+1}\right)=\mathrm{d}\left(\mathrm{AB} x_{2 n+2}, \mathrm{ST} x_{2 n+1}\right)$

$$
\begin{gathered}
\leq \alpha_{1}\left[\frac{d\left(A B x_{2 n+2}, P x_{2 n+2}\right)\left\{1+d\left(S T x_{2 n+1}, P x_{2 n+1}\right)\right\}}{\left\{1+d\left(P x_{2 n+2}, P x_{2 n+1}\right)\right\}}\right] \\
+\alpha_{2}\left[d\left(A B x_{2 n+2}, P x_{2 n+1}\right)+d\left(S T x_{2 n+1}, P x_{2 n+2}\right)\right]+\alpha_{3} d\left(P x_{2 n+2}, P x_{2 n+1}\right) \\
\leq \alpha_{1}\left[\frac{d\left(z_{2 n+2}, z_{2 n+1}\right)\left\{1+d\left(z_{2 n+1}, z_{2 n}\right)\right\}}{\left\{1+d\left(z_{2 n+1}, z_{2 n}\right)\right\}}\right] \\
+\alpha_{2}\left[d\left(z_{2 n+2}, z_{2 n}\right)+d\left(z_{2 n+1}, z_{2 n+1}\right)\right]+\alpha_{3} d\left(z_{2 n+1}, z_{2 n}\right) \\
\leq \\
\alpha_{1}\left[d\left(z_{2 n+2}, z_{2 n+1}\right)\right]+\alpha_{2}\left[d\left(z_{2 n+2}, z_{2 n}\right)\right]+\alpha_{3} d\left(z_{2 n+1}, z_{2 n}\right) \\
d\left(z_{2 n+2}, z_{2 n+1}\right) \leq \frac{\alpha_{2}+\alpha_{3}}{\left(1-\alpha_{1}-\alpha_{2}\right)} d\left(z_{2 n+1}, z_{2 n}\right) \quad \text { where } k=\frac{\alpha_{2}+\alpha_{3}}{\left(1-\alpha_{1}-\alpha_{2}\right)}<1
\end{gathered}
$$

Thus for every n we have,

$$
\begin{equation*}
d\left(z_{n+1}, z_{n}\right) \leq k d\left(z_{n}, z_{n-1}\right) \quad \text { where } \quad k=\frac{\alpha_{2}+\alpha_{3}}{\left(1-\alpha_{1}-\alpha_{2}\right)}<1 \tag{2}
\end{equation*}
$$

which shows that $\left\{z_{n}\right\}$ is a Cauchy sequence in the Metric space (X, d) and so has a limit point z in X. Hence the sequence $\mathrm{AB} x_{2 n}=\mathrm{P} x_{2 n+1}$ and $\mathrm{ST} x_{2 n+1}=\mathrm{P} x_{2 n+2}$ which are subsequences also converge to the point z .

Let us now assume that P is continuous so that the sequences $\left\{\mathrm{P}^{2} x_{2 n}\right\}$ and $\left\{\mathrm{PAB} x_{2 n}\right\}$ converges to Pz and also in view of semi-compatibility of $\{\mathrm{AB}, \mathrm{P}\},\left\{\mathrm{ABP} x_{2 n}\right\}$ converges to Pz .
Now put $x=\mathrm{P} x_{2 n}$ and $\mathrm{y}=x_{2 n+1}$ in equation (1), we have
[FRTSSDS- June 2018]
ISSN 2348-8034
DOI: 10.5281/zenodo. 1293839
$\begin{aligned} d\left(A B P x_{2 n}, S T x_{2 n+1}\right) & \leq \alpha_{1}\left[\frac{d\left(A B P x_{2 n}, P^{2} x_{2 n}\right)\left\{1+d\left(S T x_{2 n+1}, P x_{2 n+1}\right)\right\}}{\left\{1+d\left(P^{2} x_{2 n}, P x_{2 n+1}\right)\right\}}\right] \\ & +\alpha_{2}\left[d\left(A B P x_{2 n}, P x_{2 n+1}\right)+d\left(S T x_{2 n+1} P^{2} x_{2 n}\right)\right]+\alpha_{3} d\left(P^{2} x_{2 n}, P x_{2 n+1}\right)\end{aligned}$
letting $\mathrm{n} \rightarrow \infty$ we have
$d(P z, z) \leq \alpha_{1}\left[\frac{d(P z, P z)\{1+d(z, z)\}}{\{1+d(P z, z)\}}\right]+\alpha_{2}[d(P z, z)+d(z, P z)]+\alpha_{3} d(P z, z)$
$d(P z, z) \leq\left(2 \alpha_{2}+\alpha_{3}\right) d(P z, z)$
so that $P z=z$
Now put $x=\mathrm{z}$ and $\mathrm{y}=x_{2 n+1}$ in equation (1)
$d\left(A B z, S T x_{2 n+1}\right) \leq \alpha_{1}\left[\frac{d(A B z, P z)\left\{1+d\left(S T x_{2 n+1}, P x_{2 n+1}\right)\right\}}{\left\{1+d\left(P z, P x_{2 n+1}\right)\right\}}\right]$

$$
+\alpha_{2}\left[d\left(A B z, P x_{2 n+1}\right)+d\left(S T x_{2 n+1}, P z\right)\right]+\alpha_{3} d\left(P z, P x_{2 n+1}\right)
$$

letting $\mathrm{n} \rightarrow \infty$ we have
$d(A B z, z) \leq \alpha_{1}\left[\frac{d(A B z, z)\{1+d(z, z)\}}{\{1+d(z, z)\}}\right]+\alpha_{2}[d(A B z, z)+d(z, z)]+\alpha_{3} d(z, z)$
$d(A B z, z) \leq\left(\alpha_{1}+\alpha_{2}\right) d(A B z, z)$
so that $A B z=z$.
Since $\mathrm{AB}(\mathrm{X}) \subset \mathrm{P}(\mathrm{X})$ there always exists a point z^{\prime} such that $\mathrm{Pz}^{\prime}=\mathrm{z}$ so that
$\mathrm{STz}=\mathrm{ST}\left(\mathrm{Pz}^{\prime}\right)$.
Now put $\mathrm{x}=\mathrm{x}_{2 \mathrm{n}}$ and $\mathrm{y}=\mathrm{z}^{\prime}$ in equation (1),

$$
\begin{aligned}
d\left(A B x_{2 n}, S T z^{\prime}\right) & \leq \alpha_{1}\left[\frac{d\left(A B x_{2 n}, P x_{2 n}\right)\left\{1+d\left(S T z^{\prime}, P z^{\prime}\right)\right\}}{\left\{1+d\left(P x_{2 n}, P z^{\prime}\right)\right\}}\right] \\
& +\alpha_{2}\left[d\left(A B x_{2 n}, P z^{\prime}\right)+d\left(S T z^{\prime}, P x_{2 n}\right)\right]+\alpha_{3} d\left(P x_{2 n}, P z^{\prime}\right)
\end{aligned}
$$

letting $\mathrm{n} \rightarrow \infty$ we have

$$
\begin{aligned}
& d\left(z, S T z^{\prime}\right) \leq \alpha_{1}\left[\frac{d(z, z)\left\{1+d\left(S T z^{\prime}, z\right)\right\}}{\{1+d(z, z)\}}\right]+\alpha_{2}\left[d(z, z)+d\left(S T z^{\prime}, z\right)\right]+\alpha_{3} d(z, z) \\
& \left(1-\alpha_{2}\right) d\left(S T z^{\prime}, z\right) \leq 0
\end{aligned}
$$

so that $S T z^{\prime}=z$.
Hence $\mathrm{STz}^{\prime}=\mathrm{z}=\mathrm{Pz}$ ' which shows that z ' is the coincidence point of ST and P .
Now using the weak compatibility of (ST, P), we have
$\mathrm{STz}=\mathrm{ST}\left(\mathrm{Pz}^{\prime}\right)=\mathrm{P}\left(\mathrm{STz}^{\prime}\right)=\mathrm{Pz}$, which shows that z is also a coincidence point of the pair $(\mathrm{ST}, \mathrm{P})$.
Now put $x=\mathrm{z}$ and $\mathrm{y}=\mathrm{z}$ in equation (1)
$d(A B z, S T z) \leq \alpha_{1}\left[\frac{d(A B z, P z)\{1+d(S T z, P z)\}}{\{1+d(P z, P z)\}}\right]+\alpha_{2}[d(A B z, P z)+d(S T z, P z)]+\alpha_{3} d(P z, P z)$
[FRTSSDS- June 2018]
ISSN 2348-8034
DOI: 10.5281/zenodo. 1293839
$d(z, S T z) \leq \alpha_{1}\left[\frac{d(z, z)\{1+d(S T z, z)\}}{\{1+d(z, z)\}}\right]+\alpha_{2}[d(z, z)+d(S T z, z)]+\alpha_{3} d(z, z)$
$\left(1-\alpha_{2}\right) d(S T z, z) \leq 0$
so that $S T z=z$. Hence $\mathrm{z}=\mathrm{STz}=\mathrm{Pz}$ which shows that z is common fixed point of AB, ST and P .
Now suppose that $A B$ is continuous so that the sequence $\left\{\mathrm{AB}^{2} x_{2 n}\right\}$ and $\left\{\mathrm{ABP} x_{2 n}\right\}$ converges ABz . Since (AB, P) is semi-compatible it follows that $\left\{\mathrm{PAB} x_{2 n}\right\}$ also converges to ABz .

Thus put $x=\mathrm{AB} x_{2 n}$ and $\mathrm{y}=x_{2 n+1}$ in equation (1) we have

$$
\begin{aligned}
d\left(A B^{2} x_{2 n}, S T x_{2 n+1}\right) & \leq \alpha_{1}\left[\frac{d\left(A B^{2} x_{2 n}, P A B x_{2 n}\right)\left\{1+d\left(S T x_{2 n+1}, P x_{2 n+1}\right)\right\}}{\left\{1+d\left(P A B x_{2 n}, P x_{2 n+1}\right)\right\}}\right] \\
& +\alpha_{2}\left[d\left(A B^{2} x_{2 n}, P x_{2 n+1}\right)+d\left(S T x_{2 n+1}, P A B x_{2 n}\right)\right]+\alpha_{3} d\left(P A B x_{2 n}, P x_{2 n+1}\right)
\end{aligned}
$$

letting $\mathrm{n} \rightarrow \infty$ we have

$$
d(A B z, z) \leq \alpha_{1}\left[\frac{d(A B z, A B z)\{1+d(z, z)\}}{\{1+d(A B z, z)\}}\right]+\alpha_{2}[d(A B z, z)+d(z, A B z)]+\alpha_{3} d(A B z, z)
$$

$$
\left(1-2 \alpha_{2}-\alpha_{3}\right) d(A B z, z) \leq 0
$$

so that $A B z=z$.
Let there exist z^{\prime} in X such that $\mathrm{ABz}=\mathrm{z}=\mathrm{Pz}{ }^{\prime}$.
Then put $\mathrm{x}=\mathrm{AB} x_{2 n}$ and $y=\mathrm{z}^{\prime}$ in equation (1)

$$
\begin{aligned}
d\left(A B^{2} x_{2 n}, S T z^{\prime}\right) & \leq \alpha_{1}\left[\frac{d\left(A B^{2} x_{2 n}, P A B x_{2 n}\right)\left\{1+d\left(S T z^{\prime}, P z^{\prime}\right)\right\}}{\left\{1+d\left(P A B x_{2 n}, P z^{\prime}\right)\right\}}\right] \\
& +\alpha_{2}\left[d\left(A B^{2} x_{2 n}, P z^{\prime}\right)+d\left(S T z^{\prime}, P A B x_{2 n}\right)\right]+\alpha_{3} d\left(P A B x_{2 n}, P z^{\prime}\right)
\end{aligned}
$$

letting $\mathrm{n} \rightarrow \infty$ we have

$$
d\left(A B z, S T z^{\prime}\right) \leq \alpha_{1}\left[\frac{d(A B z, A B z)\left\{1+d\left(S T z^{\prime}, z\right)\right\}}{\{1+d(A B z, z)\}}\right]+\alpha_{2}\left[d(A B z, z)+d\left(S T z^{\prime}, A B z\right)\right]+\alpha_{3} d(A B z, z)
$$

$$
\left(1-\alpha_{2}\right) d\left(z, S T z^{\prime}\right) \leq 0
$$

so that $S T z^{\prime}=z$.
This gives $\mathrm{STz}^{\prime}=\mathrm{z}=\mathrm{Pz}^{\prime}$ Thus z^{\prime} is a coincidence point of (ST, P) since the pair (ST, P) is weakly compatible one has $\mathrm{STz}=\mathrm{ST}\left(\mathrm{Pz}{ }^{\prime}\right)=\mathrm{Pz}$ which show that $\mathrm{STz}=\mathrm{Pz}$.
Put $x=x_{2 n}$ and $y=\mathrm{z}$ in equation (1) we have

$$
\begin{aligned}
d\left(A B x_{2 n}, S T z\right) & \leq \alpha_{1}\left[\frac{d\left(A B x_{2 n}, P x_{2 n}\right)\{1+d(S T z, P z)\}}{\left\{1+d\left(P x_{2 n}, P z\right)\right\}}\right] \\
& +\alpha_{2}\left[d\left(A B x_{2 n}, P z\right)+d\left(S T z, P x_{2 n}\right)\right]+\alpha_{3} d\left(P x_{2 n}, P z\right)
\end{aligned}
$$

[FRTSSDS- June 2018]
ISSN 2348-8034
DOI: 10.5281/zenodo. 1293839
Impact Factor- 5.070
letting $\mathrm{n} \rightarrow \infty$ we have

$$
\begin{aligned}
& d(z, S T z) \leq \alpha_{1}\left[\frac{d(z, z)\{1+d(S T z, z)\}}{\{1+d(z, z)\}}\right]+\alpha_{2}[d(z, z)+d(S T z, z)]+\alpha_{3} d(z, z) \\
& \quad\left(1-\alpha_{2}\right) d(z, S T z) \leq 0
\end{aligned}
$$

which implies $S T z=z$
so that $\mathrm{STz}=\mathrm{z}=\mathrm{Pz}$.
The point z therefore is in range of $S T$ and since $S T(X) \subset P(X)$ there exists a point $z^{\prime \prime}$ in X such that $\mathrm{Pz}^{\prime \prime}=\mathrm{z}$. Thus put $x=\mathrm{z}$ ', and $y=\mathrm{z}$ in equation (1)

$$
\begin{aligned}
& d\left(A B z^{\prime \prime}, S T z\right) \leq \alpha_{1}\left[\frac{d\left(A B z^{\prime \prime}, P z^{\prime \prime}\right)\{1+d(S T z, P z)\}}{\left\{1+d\left(P z^{\prime}, P z\right)\right\}}\right] \\
& +\alpha_{2}\left[d\left(A B z^{\prime \prime}, P z\right)+d\left(S T z, P z^{\prime \prime}\right)\right]+\alpha_{3} d\left(P z z^{\prime \prime}, P z\right) \\
& d\left(A B z^{\prime \prime}, z\right) \leq \alpha_{1}\left[\frac{d\left(A B z^{\prime \prime}, z\right)\{1+d(z, z)\}}{\{1+d(z, z)\}}\right] \alpha_{2}\left[d\left(A B z^{\prime \prime}, z\right)+d(z, z)\right]+\alpha_{3} d(z, z) \\
& \left(1-\alpha_{2}\right) d\left(A B z^{\prime \prime}, z\right) \leq 0
\end{aligned}
$$

which implies $A B z^{\prime \prime}=z$
Also since (AB, P) are semi-compatible are hence weakly commuting we obtain $\mathrm{ABz}=\mathrm{Pz}=\mathrm{z}$ Thus we have proved that z is a common fixed point of $A B, S T$ and P.

If mappings ST or P is continuous instead of $A B$ or P, then the proof that z is a common fixed point of $A B, S T$ and P is similar.

Let v be another fixed point of P, AB and ST then $v=\mathrm{P} v=\mathrm{AB} v=\mathrm{ST} v$

$$
\begin{aligned}
& d(A B z, S T v) \leq \alpha_{1}\left[\frac{d(A B z, P z)\{1+d(S T v, P v)\}}{\{1+d(P z, P v)\}}\right]+\alpha_{2}[d(A B z, P v)+d(S T v, P z)]+\alpha_{3} d(P z, P v) \\
& d(z, v) \leq \alpha_{1}\left[\frac{d(z, z)\{1+d(v, v)\}}{\{1+d(z, v)\}}\right]+\alpha_{2}[d(z, v)+d(v, z)]+\alpha_{3} d(z, v) \\
& d(z, v) \leq\left(2 \alpha_{2}+\alpha_{3}\right) d(z, v) \\
& \text { which implies } \mathrm{z}=v .
\end{aligned}
$$

Finally we now show that z is also a common fixed point of the family $F=\{A, B, S, T, P\}$. When the pairs $(\mathrm{A}, \mathrm{B}),(\mathrm{A}, \mathrm{P}),(\mathrm{B}, \mathrm{P}),(\mathrm{S}, \mathrm{T}),(\mathrm{S}, \mathrm{P})$ and (T, P) are commuting pairs. For this event we write,
$\mathrm{Az}=\mathrm{A}(\mathrm{ABz})=\mathrm{A}(\mathrm{BA}) \mathrm{z}=\mathrm{AB}(\mathrm{Az})$
$\mathrm{Az}=\mathrm{A}(\mathrm{Pz})=\mathrm{AP}(\mathrm{z})=\mathrm{PA}(\mathrm{z})=\mathrm{P}(\mathrm{Az})$
$\mathrm{Bz}=\mathrm{B}(\mathrm{ABz})=\mathrm{BA}(\mathrm{Bz})=\mathrm{AB}(\mathrm{Bz})$
$\mathrm{Bz}=\mathrm{B}(\mathrm{Pz})=\mathrm{BP}(\mathrm{z})=\mathrm{PB}(\mathrm{z})=\mathrm{P}(\mathrm{Bz})$
$\mathrm{Sz}=\mathrm{S}(\mathrm{STz})=\mathrm{S}(\mathrm{TS}) \mathrm{z}=\mathrm{ST}(\mathrm{Sz})$
$\mathrm{Sz}=\mathrm{S}(\mathrm{Pz})=\mathrm{SP}(\mathrm{z})=\mathrm{PS}(\mathrm{z})=\mathrm{P}(\mathrm{Sz})$
$\mathrm{Tz}=\mathrm{T}(\mathrm{STz})=\mathrm{TS}(\mathrm{Tz})=\mathrm{ST}(\mathrm{Tz})$
$\mathrm{Tz}=\mathrm{T}(\mathrm{Pz})=\mathrm{TP}(\mathrm{z})=\mathrm{PT}(\mathrm{z})=\mathrm{P}(\mathrm{Tz})$

RESEARCHERID

[FRTSSDS- June 2018]
ISSN 2348-8034
DOI: 10.5281/zenodo. 1293839
Impact Factor- 5.070
which shows that Az and Bz are common fixed point of $(\mathrm{AB}, \mathrm{P})$, yielding thereby $\mathrm{Az}=\mathrm{Bz}=\mathrm{Pz}=\mathrm{ABz}$. where as Sz and Tz are common fixed point of (ST,P) it also shows that $\mathrm{Sz}=\mathrm{z}=\mathrm{Tz}=\mathrm{Pz}=\mathrm{STz}$.
Now we need to show that $\mathrm{Az}=\mathrm{Sz}(\mathrm{Bz}=\mathrm{Tz})$ also remains a common fixed point of both the pairs $(\mathrm{AB}, \mathrm{P})$ and (ST,P). For this
$\mathrm{d}(\mathrm{Az}, \mathrm{Sz})=\mathrm{d}(\mathrm{A}(\mathrm{BAz}), \mathrm{S}(\mathrm{TSz}))=\mathrm{d}(\mathrm{AB}(\mathrm{Az}), \mathrm{ST}(\mathrm{Sz}))$

$$
\begin{aligned}
& \leq \alpha_{1}\left[\frac{d(A B(A z), P(A z))\{1+d(S T(S z), P(S z))\}}{\{1+d(P(A z), P(S z))\}}\right] \\
& +\alpha_{2}[d(A B(A z), P(S z))+d(S T(S z), P(A z))]+\alpha_{3} d(P(A z), P(S z))
\end{aligned}
$$

Implies that $\left(1-2 \square_{2}\right) d(A z, S z) \leq 0$ so that $A z=S z$.
Similarly it can be show that $\mathrm{Bz}=\mathrm{Tz}$, Thus z is the unique common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}$ and P .
Example. Let A, B, S,T and P be self mapping of Hilbert space H. Let $\mathrm{X}=[0,1]$ be a closed subset of H . We define mapping
$A x=\frac{3}{4} x, B x=\frac{4}{9} x, S x=\frac{2}{3} x, T x=\frac{3}{10} x$ and $P x=\frac{1}{3} x$.
Clearly $A B(X)=\left[0, \frac{1}{3}\right] \subset P(X)=\left[0, \frac{1}{3}\right]$ and $S T(X)=\left[0, \frac{1}{5}\right] \subset P(X)=\left[0, \frac{1}{3}\right]$ and

$$
A B(X) \cap S T(X)=\left[0, \frac{1}{3}\right] \cap\left[0, \frac{1}{5}\right] \subset P(X)=\left[0, \frac{1}{3}\right]
$$

so that $\quad A B(X) \cap S T(X)=\left[0, \frac{1}{5}\right] \subset P(X)=\left[0, \frac{1}{3}\right]$.
Also the pair $(\mathrm{AB}, \mathrm{P})(\mathrm{ST}, \mathrm{P}),(\mathrm{A}, \mathrm{B}),(\mathrm{S}, \mathrm{T}),(\mathrm{A}, \mathrm{P}),(\mathrm{B}, \mathrm{P}),(\mathrm{S}, \mathrm{P})$ and (T, P) are commuting and semi-compatible or weak compatible.
For all x, y in $\mathrm{X}(\mathrm{x}>\mathrm{y})$ with $\alpha_{1}=\frac{1}{9}$ and $\alpha_{2}=\frac{1}{2}$ we have,
$\left|\frac{1}{3} x-\frac{1}{5} y\right| \leq \alpha_{1}\left[\frac{\left|\frac{1}{3} x-\frac{1}{3} x\right|\left\{1+\left|\frac{1}{5} y-\frac{1}{3} y\right|\right\}}{\left\{1+\left|\frac{1}{3} x-\frac{1}{3} y\right|\right\}}\right]+\alpha_{2}\left[\left|\frac{1}{3} x-\frac{1}{3} y\right|+\left|\frac{1}{5} y-\frac{1}{3} x\right|\right]+\alpha_{3}\left|\frac{1}{3} x-\frac{1}{3} y\right|$.
Using $\frac{1}{5} y<\frac{1}{3} y$ we get ,
$\left|\frac{1}{3} x-\frac{1}{5} y\right| \leq\left(2 \alpha_{2}+\alpha_{3}\right)\left|\frac{1}{3} x-\frac{1}{5} y\right|$
which verifies the contraction condition (1).
Clearly 0 is unique common fixed point of $\mathrm{A}, \mathrm{B}, \mathrm{S}, \mathrm{T}$ and P .

THOMSON REUTERS
[FRTSSDS- June 2018]
ISSN 2348-8034
DOI: 10.5281/zenodo. 1293839

REFERENCES

[1] Hicks, T.L., and Kybicek, J.P., On the Mann iteration process in Hilbert spaces. J. Math. Anal. Appl. 59 (1977), 498-504.
[2] Imdad,M., Five mappings with a common fixed point. Bull.Cal. Math.Soc.91,6(1999) 481-486.
[3] Imdad,M., and Khan,Q.H., A common fixed point theorem for six mapping satisfying a rational inequality. 44(1), (2002), 47-57.
[4] Fisher, B., Mappings with a common fixed point.Math.Sem. Notes. 7(1979) 81.
[5] Fisher, B., An addendum to "Mappings with a common fixed point." Math.Sem. Notes. 8(1980) 513.
[6] Jungck, G., Commuting mapping and fixed point.Amer. Math. Monthly. 83 (1976), 261.
[7] Jungck, G., Compatible mapping on common fixed point, Internat J. Math. and Math. Sci. 9 (4) (1986), 771779.
[8] Lohani, P.C. and Badshah, V.H., Compatible mappings and common fixed point for four mappings, Bull. Cal. Math. Soc., 90 (1998), 301-308.
[9] Pandhare, D.M. and Waghmade, B.B., A common fixed point theorem in Hilbert space. Acta. Ciencia. Indica. vol. XXIIM. (1997), 107-110.
[10]Sessa, S., On a weak commutativity condition of mappings in fixed point considerations. Publ. Inrt. Math. (Beograd). 32 (1982), 149-153.S
[11]Srinivas .V and Naga Raju.V., Common Fixed Point Theorem on Compatible Mappings of Type (P) Gen. Math. Notes, Vol. 21, No. 2, April 2014, pp. 87-94
[12]Shrivastava. R, Jain. N and Qureshi .K., Compatible Mapping and Common Fixed Point Theorem. IOSR Journal of Mathematics e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 7, Issue 1 (May. - Jun. 2013), PP 4648
[13]Gupta .V, Badshah.V.H and Malviya. P., Library Common fixed point theorem for compatible mappings of type (A-1) in complete fuzzy metric space. Pelagia Research Library Advances in Applied Science Research, 2016, ISSN: 0976-8610 CODEN (USA): 7(2):132-137

